Scientific Achievement
Amine/oxide adsorbent materials with different amine loadings were prepared, and the CO\textsubscript{2} adsorption behavior of similar amines on the two alumina supports are demonstrated to behave differently, emphasizing the importance of support choice in CO\textsubscript{2} sorbent design.

Significance and Impact
These results aid in the optimal design of CO\textsubscript{2} sorbents as the support can potentially be an active entity in the sorbent especially at low amine loadings. Although tuning the support properties on alumina-based supports contrasts results achieved previously on silica-based supports, it emphasizes the importance of support choice on effective sorbent design, specifically regarding amine loading, and amine-amine interactions.

Research Details
- Two class 2 aminosilyl-modified CO\textsubscript{2} sorbents were created by grafting primary amines associated with 3-aminopropyltriethoxysilane onto two different alumina materials having different levels of basicity
- Surface-amine interactions were shown to play a pivotal role in the development of CO\textsubscript{2} sorbents.
- This combined microcalorimetry and spectroscopy study reveals the influence of the specific attributes of the support on the CO\textsubscript{2}-amine species formed, and their potential applications to DAC and flue-gas capture technologies.

XRD and N$_2$ Physisorption show structural differences between ordered and disordered alumina supports (bare and with APS).

Powder XRD shows difference in crystallinity in bare alumina supports

Nitrogen physisorption confirms APS is being deposited inside mesopores instead of purely on exterior surface.
Unique trends in CO$_2$ uptake capacity as function of amine loading in Class 2 supports (differ from previous reports for silica or alumina)

Simulated flue gas = 10% CO$_2$ in He.
Simulated direct air capture = 400 ppm CO$_2$ in N$_2$

CO$_2$ uptake improved with more APS. Flue gas conditions have higher CO$_2$ absorbed than direct air capture, as expected.
In-situ FTIR spectroscopy shows nature of adsorbed species differs in both systems, D-Al₂O₃ support contained more basic sites. D-Al₂O₃ support shown to be more basic than O-Al₂O₃ material through formation of carbonate species and higher CO₂ uptake. Porous alumina supports form different adsorbed intermediates due to different combinations of amine species upon interacting with CO₂.
Different heats of adsorption for D-Al₂O₃ and O-Al₂O₃ with varying levels of APS loading due to different species formed

D-Al₂O₃ had higher heats of adsorption than O-Al₂O₃ due to more strongly basic sites

Introducing APS decreased heat of adsorption for D-Al₂O₃ but not O-Al₂O₃ suggesting APS lowered CO₂ capacity of more basic sites

At high amine loadings, both materials gave similar types of adsorbed CO₂ where support surface influence was minimized

As APS loading increased, amines became less isolated, more ion pairs formed, and higher heats of adsorption were observed